论文
论文题目: The Machado-Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53
论文题目英文:
作者: 刘红美①,李晓玲①,宁国柱①,朱姝①,#Xiao-Lu Ma,刘修利,#Chun-Ying Liu,#Min Huang,#Ina Schmitt,#Ullrich Wüllner,#Ya-Mei Niu,#郭彩霞*,王强*,唐铁山*
论文出处:
年: 2016
卷:
期: DOI:10.1371/journal.pbio.2000733
页:
联系作者: #郭彩霞,王强,唐铁山
发表期刊: PLoS Biol
ISSN:
第一作者所在部门:
收录类别:
论文连接 http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2000733
影响因子:
摘要: As a deubiquitinating enzyme (DUB), the physiological substrates of ataxin-3 (ATX-3) remain elusive, which limits our understanding of its normal cellular function and that of pathogenic mechanism of spinocerebellar ataxia type 3 (SCA3). Here, we identify p53 to be a novel substrate of ATX-3. ATX-3 binds to native and polyubiquitinated p53 and deubiquitinates and stabilizes p53 by repressing its degradation through the ubiquitin (Ub)-proteasome pathway. ATX-3 deletion destabilizes p53, resulting in deficiency of p53 activity and functions, whereas ectopic expression of ATX-3 induces selective transcription/expression of p53 target genes and promotes p53-dependent apoptosis in both mammalian cells and the central nervous system of zebrafish. Furthermore, the polyglutamine (polyQ)-expanded ATX-3 retains enhanced interaction and deubiquitination catalytic activity to p53 and causes more severe p53-dependent neurodegeneration in zebrafish brains and in the substantia nigra pars compacta (SNpc) or striatum of a transgenic SCA3 mouse model. Our findings identify a novel molecular link between ATX-3 and p53-mediated cell death and provide an explanation for the direct involvement of p53 in SCA3 disease pathogenesis.
英文摘要:
外单位作者单位: