从混沌到有序: 动物所合作研究揭示哺乳动物早期胚胎命运决定新机理

  动物所的合作团队结合数学建模以及哺乳动物早期胚胎单细胞转录组测序数据分析,对哺乳动物早期胚胎第一次谱系分化的起源问题提出了新的解释,研究工作发表于Development 

  传统观点认为,哺乳动物早期胚胎的第一次细胞命运决定起始于桑葚胚阶段(16细胞期),此阶段的卵裂球首次在位置上出现了不对称分布:定位到桑葚胚表面或内部的细胞将在随后的发育中走向不同的细胞命运,细胞分化为内细胞团(ICM,随后发育为胎儿);而细胞分化为滋养外胚层(TE,随后发育为胎盘)。然而,近年来的一些证据表明,哺乳动物早期胚胎在出现形态上的不对称分布之前,早在4-8细胞期就已经出现了分子水平上的不对称,并认为不同卵裂球之间分子水平的不对称分布是决定卵裂球向ICM TE分化的关键。然而,卵裂球之间的分子差异最早从何而来?卵裂球之间最初在分子水平产生的差别如何在后续分裂中如何动态变化并驱动不同的细胞命运决定?这些均是领域内尚未解答的问题。 

  借助近年来快速发展的单细胞测序技术,动物所研究团队通过对小鼠和人类从受精卵到16细胞期每个卵裂球的单细胞测序数据进行深度分析后发现:第一次卵裂后,两个卵裂球的表达谱就出现差异;由于此时合子基因组转录还未开始,这种差异源于分裂时细胞内物质分配的随机性。与这种随机性相吻合的是,那些对细胞生存必不可少的因子,由于含量高,比较容易被均匀分配;相反表达量低的因子(往往对细胞命运起调控作用),很难得到均匀分配,导致在两个卵裂球中含量出现差异。 

  伴随着2细胞后期合子基因组转录启动,这种卵裂球之间的随机差异出现了两种趋势:一些分子趋向于消除在各个卵裂球之间的差异,符合数学上的单稳模式;而另一些分子在各个卵裂球之间的差异越来越大,出现两极分化甚至全或无的分布,符合数学上的双稳模式。有意思的是,符合双稳模式的分子往往与细胞分化相关,提示这些分子及其形成的双稳模式是引导早期卵裂球出现命运分化的关键。 

  进一步分析发现,具有相反作用的谱系决定因子,例如Carm1 (决定ICM) Cdx2 (决定TE),在8细胞时期(形态上无明显区别)已经在不同的卵裂球内形成了各自的优势比例。这在分子层面已经预示了各个卵裂球后续不同的分化潜能。 

  本研究从分子水平揭示了早在卵裂球产生形态学差异之前,哺乳动物早期胚胎出现对称破缺(symmetry breaking)的动态进程。文章指出最初的不均等分布起源于卵裂产生的分子随机事件,继而通过转录调控将卵裂球之间的差异放大,而作用相反的谱系决定因子间力量博弈的胜负介导了第一次细胞命运决定。这些结果为理解哺乳动物早期胚胎第一次细胞命运决定的分子机理提供了一个新的理论框架。 

  本课题主要由动物所段恩奎、周琪以及陶毅3个研究组合作完成,北京大学的乔杰和汤富酬教授合作参与了本项工作。该工作得中国科学院、科技部以及国家基金的支持。 

  论文链接:Dynamic transcriptional Symmetry-Breaking in Pre-implantation Mammalian Embryo development revealed by single-cell RNA-seq 

  杂志highlight点评: Revisiting blastomere equality

不同卵裂球之间关键因子的随机差异分布与转录调控反馈共同驱动了哺乳动物早期胚胎第一次命运决定

 

关于我们
联系我们
地  址:北京市朝阳区北辰西路1号院5号
邮  编:100101
电子邮件:ioz@ioz.ac.cn
电  话:+86-10-64807098
传  真:+86-10-64807099
友情链接